
FriendlyShell Documentation
Release 1.0.9

Kevin S. Phillips

Jun 23, 2019

Contents:

1 friendlyshell 3
1.1 friendlyshell package . 3

2 Overview 9

3 Indices and tables 11

Python Module Index 13

Index 15

i

ii

FriendlyShell Documentation, Release 1.0.9

Contents: 1

https://github.com/TheFriendlyCoder/friendlyshell/blob/master/LICENSE
https://coveralls.io/github/TheFriendlyCoder/friendlyshell?branch=master
http://friendlyshell.readthedocs.io/en/latest
https://requires.io/github/TheFriendlyCoder/friendlyshell/requirements/?branch=master
https://pypi.org/project/friendlyshell/
https://pypi.org/project/friendlyshell/
https://pypi.org/project/friendlyshell/
https://travis-ci.org/TheFriendlyCoder/friendlyshell

FriendlyShell Documentation, Release 1.0.9

2 Contents:

CHAPTER 1

friendlyshell

1.1 friendlyshell package

1.1.1 Submodules

friendlyshell.base_shell module

Common shell interaction logic shared between different shells

class friendlyshell.base_shell.BaseShell(*args, **kwargs)
Bases: object

Common base class for all Friendly Shells

Defines basic IO and interactive shell logic common to all Friendly Shells

static alias_native_shell()
Gets the shorthand character for the ‘native_shell’ command

Return type str

static debug(message, *args, **_kwargs)
Displays an internal-use-only debug message to verbose log file

Default implementation hides all debug output. Use a logging mixin class to customize this behavior.

See friendlyshell.basic_logger_mixin.BasicLoggerMixin for examples.

Parameters message (str) – text to be displayed

do_close()
Terminates the currently running shell

do_exit()
Terminates the command interpreter

do_native_shell(cmd)
Executes a shell command within the Friendly Shell environment

3

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

FriendlyShell Documentation, Release 1.0.9

static error(message, *args, **_kwargs)
Displays a critical error message to the default output stream

Default implementation just directs output to stdout. Use a logging mixin class to customize this behavior.

See friendlyshell.basic_logger_mixin.BasicLoggerMixin for examples.

Parameters message (str) – text to be displayed

static help_close()
Extended help for close method

static info(message, *args, **_kwargs)
Displays an info message to the default output stream

Default implementation just directs output to stdout. Use a logging mixin class to customize this behavior.

See friendlyshell.basic_logger_mixin.BasicLoggerMixin for examples.

Parameters message (str) – text to be displayed

return_code
error / return code generated by operations run by this shell

Return type int

run(*_args, **kwargs)
Main entry point function that launches our command line interpreter

This method will wait for input to be given via the command line, and process each command provided
until a request to terminate the shell is given.

Parameters

• input_stream – optional Python input stream object where commands should be
loaded from. Typically this will be a file-like object containing commands to be run,
but any input stream object should work. If not provided, input will be read from stdin
using input()

• parent – Optional parent shell which owns this shell. If none provided this shell is
assumed to be a parent or first level shell session with no ancestry

run_subshell(subshell)
Launches a child process for another shell under this one

Parameters subshell – the new Friendly Shell to be launched

static warning(message, *args, **_kwargs)
Displays a non-critical warning message to the default output stream

Default implementation just directs output to stdout. Use a logging mixin class to customize this behavior.

See friendlyshell.basic_logger_mixin.BasicLoggerMixin for examples.

param str message text to be displayed

friendlyshell.basic_logger_mixin module

Mixin for displaying output from a friendly shell

class friendlyshell.basic_logger_mixin.BasicLoggerMixin(*args, **kwargs)
Bases: object

Mixin class, to be combined with a Friendly Shell, to direct log output to a default output stream

4 Chapter 1. friendlyshell

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object

FriendlyShell Documentation, Release 1.0.9

The assumption here is that all Friendly Shell derived classes are going to use the print(), warning() and error()
methods on this class to interact with the shell, and those methods in turn will use the Python logging API to
delegate output to. By default those methods should direct their output to stdout, however if a user has s need
to redriect the output elsewhere - like, when running a shell in a non-interactive or headless environment - then
they can easily do so by simply re-configuring the default logger for the library

Helpful links relating to logging

https://docs.python.org/2/library/logging.html#logrecord-attributes https://docs.python.org/2/library/logging.
html#logging-levels

debug(message, *args, **kwargs)
Displays an internal-use-only debug message to verbose log file

Parameters message (str) – text to be displayed

error(message, *args, **kwargs)
Displays a critical error message to the default output stream

Parameters message (str) – text to be displayed

info(message, *args, **kwargs)
Displays an info message to the default output stream

Parameters message (str) – text to be displayed

warning(message, *args, **kwargs)
Displays a non-critical warning message to the default output stream

Parameters message (str) – text to be displayed

friendlyshell.basic_shell module

friendlyshell.command_complete_mixin module

Mixin class that adds command completion to a friendly shell

class friendlyshell.command_complete_mixin.CommandCompleteMixin(*args,
**kwargs)

Bases: object

Mixin to be added to any friendly shell to add command completion

do_clear_history()
Clears the history of previously used commands from this shell

friendlyshell.command_complete_mixin.auto_complete_manager(*args, **kwds)
Context manager for enabling command line auto-completion

This context manager can be used to ensure that command completion for a Friendly Shell runner can have it’s
own self-defined auto-completion and command history while not affecting the global completion sub-system
that may already be configured prior to running the Friendly Shell. Through the use of a context manager, we
ensure the state of the command completion subsystem will be restored regardless of how the context manager
was terminated.

Parameters

• key (str) – descriptor for keyboard key to use for auto completion trigger

• callback – method point for the callback to run when completion key is pressed

• history_file (str) – optional path to the history file to use for storing previous com-
mands run by this shell. If not provided, history will not be saved.

1.1. friendlyshell package 5

https://docs.python.org/2/library/logging.html#logrecord-attributes
https://docs.python.org/2/library/logging.html#logging-levels
https://docs.python.org/2/library/logging.html#logging-levels
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

FriendlyShell Documentation, Release 1.0.9

friendlyshell.command_parsers module

Pre-defined command line parsers supported by Friendly Shell APIs

All Friendly Shell command lines are expected to begin with a command name, followed by 0 or more input parameters
as shown below:

<command_token>[<parameter_tokens>]

The command portion of each line must map command names to Python class methods that are prefixed with the
characters “do_” (ie: “do_exit()”). Because of this commands must meet the same naming restrictions as Python class
methods. Thus most Friendly Shells line parsers will want to leverage the meth default_command_parser function to
parse the first token of their command lines. Also, for convenience all command token parsers are expected to return
a named token with the label ‘command’ associated with it.

The optional list of parameter tokens may satisfy whatever restrictions are desired by a particular command. Since
they need not be mapped to Python class methods they do not need to be bound by the same naming rules as the
command token. Finally, the list of input parameters - when provided - are expected to return a named token with the
label ‘params’, which will define a list of 1 or more input parameters to be provided to the command.

Below you will find some helper functions that provide pre-built grammars for some common command and parameter
token styles so users of the library need not always write their own.

friendlyshell.command_parsers.default_command_token()
token parser that satisfies the requirements of the FShell interpreter

Meets the default naming requirements of the Friendly Shell interpreter, ensuring that command names may
be safely mapped to Python class methods. The resulting token will be labelled ‘command’ as required by the
Friendly Shell APIs.

Return type pyparsing.Parser

friendlyshell.command_parsers.default_line_parser()
Gets the default command line parser used by the Friendly Shell APIs

Return type pyparsing.Parser

friendlyshell.command_parsers.quoted_space_sep_params_token()
Gets a token parser that supports

This parser expects all commands to take the following form: <command_name>[<optional_param1>
<optional_param2>. . .]<eol>

The <command_name> maps to a method of this class or a descendent of it with the same name but with a
prefix of “do_”. As a result tokens for commands must adhere to the same restrictions as a typical Python class
method.

Commands may optionally accept parameters if desired. Parameters are provided on the same line as the com-
mand and are separated by spaces. Each parameter may use any printable character since they are translated
to Python strings during translation and thus need not be restricted to the same criteria as commands. Also, if
a parameter needs to contain embedded spaces then it must be wrapped in quotation marks. Single or double
quotes will work. Further, if you need to embed quotation marks within your string simply wrap the inner quotes
with outer quotes of the opposite style.

The command token can be accessed by named attribute ‘command’, and the list of any parameters provided on
the line can be acessed by the named attribute ‘params’.

TODO: Add support for escaping quote characters when embedded in strings delimited with the same quote
style, as in “”hello” world”

Return type pyparsing.Parser

6 Chapter 1. friendlyshell

FriendlyShell Documentation, Release 1.0.9

friendlyshell.shell_help_mixin module

friendlyshell.version module

1.1.2 Module contents

Package initialization. . .

1.1. friendlyshell package 7

FriendlyShell Documentation, Release 1.0.9

8 Chapter 1. friendlyshell

CHAPTER 2

Overview

Framework for writing interactive Python command line interfaces, similar to the ‘cmd’ built in class.

9

FriendlyShell Documentation, Release 1.0.9

10 Chapter 2. Overview

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

11

FriendlyShell Documentation, Release 1.0.9

12 Chapter 3. Indices and tables

Python Module Index

f
friendlyshell, 7
friendlyshell.base_shell, 3
friendlyshell.basic_logger_mixin, 4
friendlyshell.command_complete_mixin, 5
friendlyshell.command_parsers, 6
friendlyshell.version, 7

13

FriendlyShell Documentation, Release 1.0.9

14 Python Module Index

Index

A
alias_native_shell()

(friendlyshell.base_shell.BaseShell static
method), 3

auto_complete_manager() (in module
friendlyshell.command_complete_mixin),
5

B
BaseShell (class in friendlyshell.base_shell), 3
BasicLoggerMixin (class in

friendlyshell.basic_logger_mixin), 4

C
CommandCompleteMixin (class in

friendlyshell.command_complete_mixin),
5

D
debug() (friendlyshell.base_shell.BaseShell static

method), 3
debug() (friendlyshell.basic_logger_mixin.BasicLoggerMixin

method), 5
default_command_token() (in module

friendlyshell.command_parsers), 6
default_line_parser() (in module

friendlyshell.command_parsers), 6
do_clear_history()

(friendlyshell.command_complete_mixin.CommandCompleteMixin
method), 5

do_close() (friendlyshell.base_shell.BaseShell
method), 3

do_exit() (friendlyshell.base_shell.BaseShell
method), 3

do_native_shell()
(friendlyshell.base_shell.BaseShell method), 3

E
error() (friendlyshell.base_shell.BaseShell static

method), 3

error() (friendlyshell.basic_logger_mixin.BasicLoggerMixin
method), 5

F
friendlyshell (module), 7
friendlyshell.base_shell (module), 3
friendlyshell.basic_logger_mixin (mod-

ule), 4
friendlyshell.command_complete_mixin

(module), 5
friendlyshell.command_parsers (module), 6
friendlyshell.version (module), 7

H
help_close() (friendlyshell.base_shell.BaseShell

static method), 4

I
info() (friendlyshell.base_shell.BaseShell static

method), 4
info() (friendlyshell.basic_logger_mixin.BasicLoggerMixin

method), 5

Q
quoted_space_sep_params_token() (in mod-

ule friendlyshell.command_parsers), 6

R
return_code (friendlyshell.base_shell.BaseShell at-

tribute), 4
run() (friendlyshell.base_shell.BaseShell method), 4
run_subshell() (friendlyshell.base_shell.BaseShell

method), 4

W
warning() (friendlyshell.base_shell.BaseShell static

method), 4
warning() (friendlyshell.basic_logger_mixin.BasicLoggerMixin

method), 5

15

	friendlyshell
	friendlyshell package

	Overview
	Indices and tables
	Python Module Index
	Index

